AP Physics • Center-of-Mass Problems

1. Make sure that you are able to derive all of the following formulas for areas and volumes of the following geometric shapes using calculus.

$$
\begin{aligned}
& \text { Area of a circle }=\pi r^{2} \\
& \text { Surface area of a sphere }=4 \pi r^{2} \\
& \text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
& \text { Area of a triangle }=\frac{1}{2} b h \\
& \text { Lateral surface area of a cone }=\pi r l, \text { where } l=\text { slant height } \\
& \text { Volume of a cone }=\frac{1}{3} \pi r^{2} h, \text { where } h=\text { altitude }
\end{aligned}
$$

In problems 2-9, find the coordinates of the center of mass of each geometric shape as many different ways that you can think of using calculus:
2. a uniform right triangular lamina.
3. a uniform arbitrary triangular lamina. (Hint: Use the results from problem 2)
4. a uniform semi-circular thin wire. (Answer: $2 R / \pi$)
5. a uniform semi-circular disc. (Hint: Use the results from problem 3 or problem 4 or use rectangles.) (Answer: $4 R / 3 \pi$)
6. a uniform hemispherical shell. (Hint: Use the results from problem 5.) (Answer: $R / 2$)
7. a uniform hemispherical solid. (Hint: one way is to use the results from problem 5.) (Answer: 3R/8)
8. a uniform conical surface (no base).
9. a uniform conical solid.

